Бесплатная консультация юриста
Круглосуточно
Звоните сейчас!
+7 (499) 322-26-53

Главная Кредиты Формула без времени для пути

Формула без времени для пути

0

Равноускоренное движение

Равноускоренное движение – это движение с ускорением, вектор которого не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту.

Рассмотрим последний случай более подробно. В любой точке траектории на камень действует ускорение свободного падения g → , которое не меняется по величине и всегда направлено в одну сторону.

Движение тела, брошенного под углом к горизонту, можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.

Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y – равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.

Формулы для равноускоренного движения

Формула для скорости при равноускоренном движении:

Здесь v 0 – начальная скорость тела, a = c o n s t – ускорение.

Покажем на графике, что при равноускоренном движении зависимость v ( t ) имеет вид прямой линии.

Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.

a = v – v 0 t = B C A C

Чем больше угол β , тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.

Для первого графика: v 0 = – 2 м с ; a = 0 , 5 м с 2 .

Для второго графика: v 0 = 3 м с ; a = – 1 3 м с 2 .

По данному графику можно также вычислить перемещение тела за время t . Как это сделать?

Выделим на графике малый отрезок времени ∆ t . Будем считать, что он настолько мал, что движение за время ∆ t можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка ∆ t . Тогда, перемещение ∆ s за время ∆ t будет равно ∆ s = v ∆ t .

Разобьем все время t на бесконечно малые промежутки ∆ t . Перемещение s за время t равно площади трапеции O D E F .

s = O D + E F 2 O F = v 0 + v 2 t = 2 v 0 + ( v – v 0 ) 2 t .

Мы знаем, что v – v 0 = a t , поэтому окончательная формула для перемещения тела примет вид:

s = v 0 t + a t 2 2

Для того, чтобы найти координату нахождения тела в данный момент времени, нужно к начальной координате тела добавить перемещение. Изменение координаты при равноускоренном движении выражает закон равноускоренного движения.

Закон равноускоренного движения

y = y 0 + v 0 t + a t 2 2 .

Еще одна распространенная задача, которая возникает при анализе равноускоренного движения – нахождение перемещения при заданных значениях начальной и конечной скоростей и ускорения.

Читайте также:  Втб 24 на обводном канале 120

Исключая из записанных выше уравнений t и решая их, получаем:

s = v 2 – v 0 2 2 a .

По известным начальной скорости, ускорению и перемещению можно найти конечную скорость тела:

v = v 0 2 + 2 a s .

При v 0 = 0 s = v 2 2 a и v = 2 a s

Величины v , v 0 , a , y 0 , s , входящие в выражения, являются алгебраическими величинами. В зависимости от характера движения и направления координатных осей в условиях конкретной задачи они могут принимать как положительные, так и отрицательные значения.

Определение и формула равноускоренного движения

Движение, при котором за любые равные промежутки времени скорость меняется на одну величину, называют равнопеременным. Если скорость при этом увеличивается, то такое движение носит название равноускоренного движения.

Равноускоренное движение можно определить еще как движение, при котором модуль касательного ускорения ().

Основные кинематические величины при равноускоренном движении

Ускорение при равноускоренном движении находят как:

где v2 – конечная скорость, v1– начальнаяскорость движения, t–время движения.

Скорость в любой момент равноускоренного прямолинейного движения можно найти как:

где – начальная скорость движения.

Уравнение для координаты материальной при равноускоренном движении записывают как:

где v0x – проекция начальной скорости на ось X, ax – проекция ускорения на ось X.

Перемещение при равноускоренном движении является функцией вида:

где – перемещение в начальный момент времени. Или еще можно представить как:

Примеры решения задач

Задание. Тело было брошено вертикально вверх. Оно возвратилось на землю через промежуток времени, равный t. Какой была начальная скорость тела, и на какую высоту оно поднялось?

Решение. Тело в поле тяжести Земли движется с постоянным ускорением равным ускорению свободного падения, на рис.1 оно направлено вниз.

В качестве основы для решения задачи используем формулу для перемещения при равноускоренном движении:

Все движение происходит только по оси Y, поэтому проекция выражения (1.1) примет вид:

Формула для скорости при равноускоренном движении записывается как:

В проекции на ось она преобразуется к виду:

Точке максимального подъема мы имеем y(t1)=h и v(t1)=0 (t1 – время поъема), тогда выражения (1.2) и (1.4) перепишем как:

где . Следовательно,

Подставляя выражение (1.6) вместо начальной скорости в формулу h, имеем:

Ответ.

Задание. Расстояние между двумя точками равно l. Первую половину пути тело проходит равноускорено, вторую равнозамедленно. Максимальная скорость тела равна v. Каков модуль ускорения тела и время его перемещения, если ускорения на обоих участках пути равны по модулю.

Читайте также:  Втб 24 жалоба на обслуживание

Решение. Данную задачу можно решить двумя способами.

1 способ аналитический.

В качестве основы для решения задачи используем формулу для перемещения при равноускоренном движении:

Для первой половины пути, учитывая, что мы рассматриваем прямолинейное движение, запишем:

где учтено, что .

Для второй половины пути получаем:

где .

Суммарное время, которое провело время в пути равно:

Наибольшая скорость движения равна:

Суммарный путь равен:

Ускорение выразим из (2.2), имеем:

2.графический способ решения задачи.

Для этого построим график зависимости v(t).

Путь равен площади под кривой или в нашем случае сумме площадей треугольниковOABи ABC. Значит можно записать:

Ответ.

Движение с ускорением

Равноускоренное прямолинейное движение – движение по прямой с постоянным ускорением (а = const ).

Ускорение а (размерность: м/с 2 ) – векторная физическая величина, показывающая, на сколько изменяется скорость тела за 1 с.

В векторном виде:

В проекции на ось ОХ формула аналогичная

Знаки проекции ускорения зависят от направления вектора ускорения и оси – сонаправлены они или направлены противоположно.

Измерительный прибор – акселерометр. (В ЕГЭ по физике есть вопросы, каким прибором что измеряют.)

График ускорения – зависимость проекции ускорения от времени:

График ускорения при равноускоренном прямолинейном движении – прямая, параллельная оси времени (1, 2).
Чем дальше график от оси времени (2), тем больше модуль ускорения.

Мгновенная скорость – скорость в данный момент времени или в данном месте пространства .

Скорость при равноускоренном прямолинейном движении.

В векторном виде,
в проекции на ось OX,
с учетом знака ускорения («+» разгон, «-» торможение):


График мгновенной скорости – зависимость проекции скорости от времени.

График скорости при равноускоренном прямолинейном движении – прямая (1, 2, 3). Если график располагается над осью времени, то тело движется по направлению оси ОХ.

Чем больше угол наклона графика (3), тем больше модуль ускорения.

Если график пересекает ось времени (2), то на первом этапе тело тормозило, в какой-то момент скорость его стала равной нулю, и далее тело двигалось ускоренно в противоположную сторону.

Читайте также:  Халык банк открыть карточку

Геометрический смысл перемещения


Модуль перемещения при равноускоренном прямолинейном движенииравен площади трапеции под графиком скорости.

Формулы для определения кинематических величин равноускоренного прямолинейного движения:


"Без ускорения" и "без времени" означает, что в этих формулах не фигурирует ускорение и время, но это не значит, что ускорение равно нулю.
Цветом выделены основные формулы, остальные легко выводятся из них.

Уравнение координаты при равноускоренном прямолинейном движении позволяет определить кинематические величины равноускоренного прямолинейного движения даже в тех случаях, когда направление движения меняется:

Графики кинематических величин прямолинейного движения.
Их ндо уметь читать и рисовать. По горизонтальной оси обычно время. По вертикальной оси. будьте внимательны!

Свободное падение

Это частный случай движения с ускорением.

• Свободное падение происходит под действием только силы тяжести. Подробнее о связи силы с ускорением будет в теме "Динамика", второй закон Ньютона.

• Сопротивление воздуха обычно не учитывается.

• Все тела независимо от массы падают (в вакууме или без учета сопротивления воздуха) с одинаковым ускорением.

• Ускорение свободного падения всегда направлено вниз, к центру Земли и равно g = 9,8 м/с 2 ; в задачах округляется до
g = 10 м/с 2 .

• Свободное падение по вертикали – пример равноускоренного прямолинейного движения.

• В задачах на свободное падение единицы измерения всех величин сразу следует переводить в СИ.

Основные формулы для определения кинематических величин при свободном падении (вертикальный бросок) те же, что даны выше. При этом ускорение a=g=10 м/с 2 .

Уравнение координаты при свободном падении позволяет определить кинематические величины свободного падения даже в тех случаях, когда направление движения изменяется. Уравнение координаты позволяет определить высоту тела в любой момент времени.

В разделе "Динамика" рассмотрим более сложные случаи:
– Тело подбросили от земли и поймали на некоторой высоте.
– Тело подбросили от земли, на одной и той же высоте оно побывало дважды.
– Горизонтальный бросок (движение по параболе). Бросок под углом к горизонту.


finday

finansday.com - простой, но полезный сайт о вкладах, кредитах и инвестициях в городе Москве. В общем все, что касается финансов в 2016 и 2017, 2018 году.

Добавить комментарий

Ваше имя:
Сообщение:

Комментарии

Adblock detector